
Transaction Acceleration in Secure Database Systems
1

Ramzi A. Haraty and Roula C. Fany

 Lebanese American University

Beirut, Lebanon

Email: rharaty@beirut.lau.edu.lb, rolafany@sodetel.net.lb

1
 Proceedings of the 13

th
 National Conference on Computer Applications in Industry and

Engineering (CAINE-2000). Honolulu, Hawaii, USA. November 2000.

Abstract

 Query acceleration and optimization continues to

capture a great deal of attention because data in

networked systems is distributed to many sites and data

transfer is a necessity. Query optimization studies

efficient techniques to minimize the cost and amount of

data transferred. However, in multilevel secure systems,

not only the amount of data is important but also the

classification and flow of this data from and to specific

sites. Multilevel secure systems are distributed systems

where each site contains data categorized by security

levels, which vary from unclassified to top secret. Each

site cannot store data with higher security level. Some

research has been done in this area. In this paper, an

algorithm is presented to accelerate secured queries and

the results are compared to other methods.

Keywords:

Multilevel Secure Databases, Joins, and Query

Acceleration.

1.0 Introduction

 The distribution of data over many sites has created

new challenges and problems to solve in order to access

information accurately, confidentially, and efficiently.

Security of data in multilevel systems is of paramount

importance. Many algorithms have proposed to store

data securely and tried to suggest new techniques to

control the mode of access privileges of users to data,

hence preventing any unauthorized disclosure of

information [3][6].

 Among those techniques, we name Air Force

Summer Study [6] that deals with classification of data.

The basic idea is that data is classified according to

certain security levels that may range from: unclassified

- classified - secret - top secret. Each level is stored

separately and in case of a distributed system, each site

may store one specific level. The main restrictions to

respect are that a user is not allowed to view

information with higher security level and is allowed

only to modify data at her/his level.

 In this work, we propose a method that processes

data securely and reduces the query response time of

transactions in multilevel secure systems. We compare

our results to other methods.

This rest of this paper is organized as follows: Section 2

gives an overview of the basic concepts. Section 3

presents our suggested algorithm. Section 4 shows an

example of the calculations done. Section 5 presents the

experimental results obtained when compared to a join

without any acceleration. Section 6 concludes the paper

and presents the future work to be done.

2.0 Basic Concepts

 A MultiLevel Secure DataBase System (MLS/DBS)

is a collection of users and data objects or relations [2].

Users are assigned different classification levels and

data objects are assigned different sensitivity levels.

Data are physically distributed and stored in separate

databases according to sensitivity level with each

relation storing only tuples with the same sensitivity

level. It is the responsibility of the MLS/DBS to ensure

that database users access only those data items for

which they have been granted a clearance. This

architecture is fairly secure since data are segregated

and separated. However, performance overhead

associated with multilevel transactions is a major

disadvantage.

 In order to prevent illegal disclosure of information,

the flow of data should always go from lower security

levels to higher security levels. Thus, traditional data

retrieval mechanisms have to modified and, therefore,

potentially become more complex.

 The straightforward or unoptimized solution to query

processing may ensure that confidentiality of data is

maintained but would result in slow and inefficient

queries while increasing the traffic on the network.

Query optimization aims at minimizing unnecessary and

redundant transfers by reducing data before shipment

and then choosing a specific order of data flow between

sites. The traditional method used in query processing is

a three-phased approach that consists of the following:

 local processing to filter unnecessary data,

mailto:rharaty@beirut.lau.edu.lb

 semi-join reduction involving shipment of data

from one site to another, and

 final assembly at the destination site.

 Using the above method, we notice that the flow of

data is dependent on the maximum gain to be achieved

by reducing the cost of transfer. Because this method is

intended for medium-level secured systems, some

optimization issues will be sacrificed for security

purposes in order to prevent the disclosure of

confidential information. So our algorithm will have as

main target to prevent the flow of data from higher to

lower security levels even if query processing will not

be the most optimal in terms of amount of data

transferred.

 However, it is important to note that we will transfer

back from higher level to lower level secured sites a bit

vector representing the tuples of the lower level site that

matched and that will be transferred to the destination

site assuming that no confidential information is hidden

or packed with this bit vector transmitted. This is

acceptable since in multilevel secure database systems,

the join attributes tend to be classified at a lower

security level than the rest of the data in the database.

3.0 The RR-General Algorithm

 Our query optimization algorithm will transfer data

from low-level secured sites to high-level secured sites

in order to reduce the data that needs to be shipped.

During cost calculations, the transmission cost will be

computed as a linear function of the size of the data.

Schedule selectivity is calculated as a product of

selectivities of all the attributes in the schedule. A

selectivity of an attribute is defined as the number of

distinct values divided by the number of possible values

of the attribute [1][5].

 We call our algorithm the RR-General algorithm, and

it consists of the following steps:

1. Perform all initial local processing.

2. Set the cumulative selectivity to 1.

3. For each relation R do the following:

i - Call the FORWARD_RR_GENERAL

procedure.

ii - Call the BACKWARD_RR_GENERAL

procedure.

4. Ship resulting data to destination site.

3.1 Procedure FORWARD_RR_GENERAL

1. Order relations Ri such that

 S1 S2 …  Sm

 where Si is the security level of Ri

For each joining attribute of the current relation:

2. Transfer the joining attribute to the next relation by

multiplying its size by the cumulative selectivity.

3. Let the cumulative selectivity = cumulative selectivity

* selectivity of the joining attribute transmitted.

4. Choose the transmission of the joining attribute with

the minimum cost.

5. Build a list, L, where L Ri Ri+1 j is set to 1 when

transmission was done from Ri to Ri+1 on join

attribute j.

6. When calculating transmission cost,

If L Ri Ri + 1 j = 1 then

cost = 0

Else

 cost = C0 + C1 * bik

 where :

C0 + C1 * bik is the linear function of

transmission cost that is equal to the fixed cost

per byte transmitted (C1) multiplied by the size

in bytes of the join attribute projected. This is

the usual cost of a semi-join known as the

forward cost.

7. The PERF bit vector is built and assigned the

following cost:

(bik * b(i + 1) k)/8 is the backward cost that is the

cost of transmitting back to Ri the bit vector

consisting of only matching values of the

corresponding attribute. For simplicity of this

equation, we are considering attribute k of

width 1 byte. This bit vector is sent back to Ri

to be stored if Ri has a higher security level

than Ri+1 or else, it will be stored in Ri+1 and

transferred to Ri only when another join is

needed between those two relations. In this

case and for security purposes, we will not

transmit for this moment this bit vector but we

will store at the higher level site until the

second phase: BACKWARD_RR_GENERAL.

3.2 Procedure BACKWARD_RR_GENERAL

1. Order relations Ri such that

 Sm ≥ … ≥ S2 ≥ S1

 where Si is the security level of Ri

 For each relation, do the following:

2. Transfer the reduced relation to the destination site

using the cost equations described above.

3. Transmit to the lower level site the bit vector in order

to reduce it and send the reduced relation to the

destination site.

 The total cost, will be the sum of all the above costs.

 As it can be seen, the RR-GENERAL algorithm does

not ship all relations to the destination site as the

unoptimized method does, but it tries to reduce the

relations before shipment to the query site. This

reduction is limited by the security considerations,

meaning that it does not provide the most optimal

schedule but the safest one.

 This reduction is ensured by the transmission of the

PERF bit vector back to the original site in order to

reduce its tuples for final shipment. This method will

add a little overhead on the transmission cost, but this

overhead is negligible compared to the gain obtained by

the reduction effect. We note that the reduction effect of

the algorithm is proportional to the width of the

attributes used. In section 5, we show results from

different width selections to clarify this issue.

4.0 A Comparative Example

 Consider an AIRCRAFT database that describes a

database for aircraft supply system. The database

consists of the following relations:

1. PARTS (P#, PNAME): This relation identifies the

different parts of a plane. It is stored at the

unclassified level.

2. ON_ORDER (S#, P#, QTY): This relation identifies

the supplier number for each part of the aircraft and

the corresponding quantity on order. This relation is

stored at the confidential level.

3. S_P_J (S#, P#, J#): This relation contains for each

job number, the part numbers and from which

suppliers they are. S_P_J is stored at the secret level.

4. SUPPLIERS (S#, SNAME): This relation identifies

the different suppliers. It is stored at the top-secret

level.

 Also consider the following query: List the product

number, name, supplier name and total quantity for all

parts if the aircraft that are currently on order from

suppliers who supply that part to jobs 1 or 2.

 The two joining attributes are: P# and S#. The cost

function to be used is: C(X) = 20 + X. It is a linear

function in the form of y= aX + b where:

i- Cost added per byte transmitted.

ii- Fixed cost dependent on the network used. In

this example b is taken as 20.

 The corresponding size and selectivity relations are

given in the following figure:

Ri |Ri| Si di1 = P#

 bi1 ρi1

di2 = S#

 bi2 ρi2

R1 70 1000 400 0.9 100 0.9

R2 140 2000 400 0.9 450 0.9

R3 120 3000 900 0.9 - -

R4 50 1000 - - 75 0.2

Figure 1. Relations Description

For each relation we have as given:

|Ri|: cardinality of the relation (number of tuples).

Si : size of the relation in bytes.

dii : join attribute.

bii : for each joining attribute, the size, in bytes, of the

column in the corresponding relation.

ii : for each joining attribute, the corresponding

selectivity.

 Applying algorithm RR-GENERAL to this query, the

following results are obtained using both procedures

FORWARD_RR_GENERAL and

BACKWARD_RR_GENERAL.

 Using the procedure FORWARD_RR_GENERAL,

the following ordering is produced:

R1 – R2 – R3 – R4

 So the flow of data should always go from R1 to R4.

R1:

Cost1 = C(400)

 = 420

Cost2 = C(100)

 = 120

We choose Cost2 = 120

PERF (at R2) = 100 * 0.9 / 8

 = 11.25

R2:

Cost = C(400 * 0.9)

 = 380

PERF (at R3) = 80 * 0.9 / 8

 = 9

 Using the second procedure of the algorithm

BACKWARD_RR_GENERAL, we get the following

ordering:

R4 – R3 – R2 – R1

R4:

Cost = C(1000)

 = 1020

R3:

Cost = C(3000 * 0.81)

 = 2450

R2:

PERF = C(9)

 = 29

Cost = C(2000 * 0.81) + 29

 = 1669

R1:

PERF = C(11.25)

 = 31.25

Cost = C(1000 * 0.81) + 31.25

 = 861.25

Total cost = 6500.25

 Using the unoptimized method we would get: 7080.

Therefore, our contribution is: (7080 – 6500.25) / 7080

= 8.19% where contribution is equal to the initial time -

enhanced time divided by the initial time. In our case

the initial time is unoptmized time and the enhanced

time is RR time.

5.0 Experimental Results

 Different scenarios were conceived in order to

evaluate the performance of the different algorithms and

for each scenario programs were run 700 times.

 Note that all programs were developed using Visual

C++ 6.0 under Windows 98. Experiments were

conducted on a Pentium V PC with 64 MB RAM.

5.1 Scenario 1

 In this scenario the attribute width is taken as 1 byte

for all attributes. The Type field in the table below

indicates the number of tables joined and the maximum

number of joining attributes. Graphically, the results are

represented as follows:

Type Unoptimized RR-General Gain

4-2 26828.55 25192.84 6.09%

4-3 33498.00 32891.93 1.80%

4-4 39050.00 35259.15 9.70%

5.2 Scenario 2

 In this scenario the attribute width is taken as 5 bytes

for all attributes. Graphically, the results are represented

as follows:

Type Unoptimized RR-General Gain

4-2 26795.00 25682.93 4.10%

4-3 33259.86 32694.41 1.70%

4-4 38566.57 36035.22 6.50%

 We used different scenarios in order to study the

performance of the algorithms from different

perspectives. For each scenario, we compared the

performance of the algorithm with respect to the

unoptimized solution. Using different scenarios we

studied better the behavior of all algorithms under a

variety of circumstances.

6.0 Conclusion and Future Work

 In this paper, an algorithm using semi-joins was

presented as our contribution to the query optimization

problem for multilevel secured databases. Experimental

results confirmed our expectations by showing an

enhancement over the unoptimized method. However,

based on the fact that during the query processing, data

in the relations should not be updated without updating

the list accordingly and because not much work has

been done until now to deal with this problem, we view

RR-General algorithm as a good solution for distributed

query optimization for multilevel secured databases that

can be adapted for huge, static warehouses where data is

not changed very frequently.

References

[1] R. Fany, PERF Solutions For Distributed

Query Optimization, Thesis, September 1999.

[2] D. E. Bell and L. J. LaPadula, Secure

Computer Systems, The Mitre Corporation.

March 1976.

[3] R. Haraty, “Concurrency Control and Query

Processing in Multilevel Secure Kernelized

Databases,” Proceedings of the Symposium on

Applied Computing. Phoenix, AZ. April 1994.

[4] Alan R. Hevner, O. Qi Wu and S. Bing Yao,

“Query Optimization on Local Are Networks,”

ACM Transactions on Office Information Vol.

3, No. 1. January 1985.

[5] Zhe Li and K. A. Ross, “Fast Joins Using Join

Indices,” VLDB Journal, Vol. 8, No. 1. 1999.

[6] Multilevel Data Management Security,

Committee on Multilevel Data Management

Security, Air Force Studies Board. National

Research Council. Washington, DC. 1983.

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

4-2 4-3 4-4

Unoptimized

RR-General

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

35000.00

40000.00

45000.00

4-2 4-3 4-4

Unoptimized

RR-General

